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Abstract

Large scale scientific projects generate and use huge amounts of data. For example, the NASA

EOSDIS project is expected to archive one petabyte per year of raw satellite data. This data is

made automatically available for processing into higher level data products and for dissemination

to the scientific community. Such large volumes of data can only be stored in robotic storage

libraries (RSLs) for near-line access. A characteristic of RSLs is the use of a robot arm that

transfers media between a storage rack and the read/write drives, thus multiplying the capacity of

the system.

The performance of the RSLs can be a critical limiting factor of the performance of the archive

system. However, the many interacting components of an RSL make a performance analysis

difficult. In addition, different RSL components can have widely varying performance

characteristics. This paper describes our work to develop perlormance models of a RSL. We first

develop a performance model of a RSL in isolation. Next, we show how the RSL model can be

incorporated into a queuing network model. We use the models to make some example

performance studies of archive systems.

The models described in this paper, developed for the NASA EOSDIS pro.iect, are implemented

in C with a well-defined interface. The source code, accompanying documentation, and also

sample JAVA applets, are available at:

http ://www.cis.ufl.edu/-ted/

Introduction

Large scale scientific projects generate and use huge amounts of data. For example, the NASA

EOSDIS project is expected to archive one petabyte per year of raw satellite data [KBCH94].

This data is made automatically available for processing into higher level data products and for

dissemination to the scientific community (see, for example, the reports in [ESDIS]). Automalic

management of such large data sets requires the use of tertiary storage, typically implemented

using robotic storage libraries (RSLs). In addition to EOSDIS and related projects, many

organizations and scientific disciplines make use of mass storage archives (tk)r exalnple high

energy physics [Lu95] and digital libraries [CoHu93]).
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The database community has also become interested in the use of RSLs
[DSF94,CHL93,Sequoia2k,Sa95]. This interest is motivated in part by scientific database
problemssuchas EOSDIS. Another motivation for integratingRSLs with on-line database
systemsis to facilitatedatawarehousing.

Tertiarystorageis requiredwhenthemanageddatasetbecomestoo largeto storeeconomically
with conventionalmagneticdiskdevices.The point at which tertiarystoragebecomesnecessary
is aneconomictradeoff. Currently,it seemsthattertiarystorageis neededto managemorethana
terabyteof data.A RSL is muchslowerthanmagneticdiskstorage,anddataaccesslatenciescan
run into minutes even on unloadedsystems.However, RSL-residentdata can be accessed
automatically.Hierarchicalstoragemanagementsystems,suchasUnitree,Filestore,andAmass,
provide the illusion that the RSL is anextensionof the file system. Accessto archiveddata
incursa shortdelay. Thestoragecapacityof adatasystemcanalsobeincreasedby usingoff-line
storage-- i.e. taperackswith humanoperators.Accesslatencieswith off-line storagecanbevery
large,ranginginto hoursor days,but thedatastoragecapacityis limited only by the sizeof the
warehousethat one canafford to rent. SinceRSL providesdatavolumesand accesslatencies
betweenthoseprovided by on-line and off-line storage,it is often referredto as near-line

storage. A cost analysis of on-line, near-line, and off-line archives can be found in [KGT90].

A characteristic of RSLs is the use of removable media and a robot arm. The removable media

(e.g. magnetic tape, optical disk, etc. are normally located in a storage rack. To service a request

for a file, the robot arm fetches the proper media from the storage rack and delivers it to a

read/write drive. The media is accessed in the normal way to fetch the file. Finally, the media is

returned to the storage rack. The capacity of RSL is the product of the capacity of the media and

the size of the storage rack. Recent magnetic tapes have a data capacity on the order of 10

Gbytes, and storage rack sizes range from 10 to 1000 media (approximately). The time to fetch

and mount the media which holds the requested file can be a large component of the access
latency.

The performance of the RSLs can be a critical limiting factor of the performance of the archive

system. Given the high data request rates expected for EOSDIS, attention to handling these

requests efficiently is critical [KBCH94,ESDIS]. However, the many interacting components of a

RSL make a performance analysis difficult. In addition, different RSL components can have

widely varying performance characteristics.

This paper describes our work to develop performance models of tertiary storage. We first

develop a performance model of a RSL in isolation. Next, we show how the RSL model can be

incorporated into a queuing network model. Finally, we model fork-join jobs to study the

tradeoffs of using multiple devices. We use the models to make some example performance

studies of archive systems.
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The models described in this paper, developed for the NASA EOSDIS project, are implemented

in C with a well-defined interface. The source code, accompanying documentation, and also

example JAVA applets, are available through:

http ://www.cis.ufl.edu/~ted/

Previous Work

Considerable work has been done to develop performance models of mass storage. Rahm

[Rh92] presents a simulation study of a database system with a hierarchy of storage devices.

Ramakrishnan and Emer [RE89] present a queuing model of a client/server file system.

Drakopoulos and Merges [DM92] present a closed queuing model of a client/server storage

system with hierarchical storage. Kelly, Haynes, and Ernest [KHE91] discuss a benchmark for

network storage systems. Hauser, Rivera, and Thoma [HRT91] discuss the performance of their
networked WORM server.

Some work has been done to characterize the performance of mass storage devices. Waters

[Wa74] presents a validated model of seek times in hard disk drives. More recently, Ruemmler

and Wilkes [ReWi94] present a detailed model of a modern disk drive, and discuss the

difficulties inherent in I/O modeling. Christodoulakis and Ford [CF88] and Christodoulakis

[Ch87] present analytical performance models of optical drives. Chinnaswamy [Ch92] presents

performance models of a streaming tape drive to investigate the benefit of a cache.

Models of disk arrays resemble the models presented in this paper in several aspects. Burkhard,

Claffy, and Schwarz [BCS91] present a simulation study of a disk array scheme. Lee and Katz

[LK93] and Yang, Hu and Yang [YHY94] present analytical models of disk arrays. Chen et al.

[CLGKP94] and Thomasian [Th95] present surveys of research in RAID modeling.

Several authors have modeled a RSL. Butturini [Bu88] presents the results of a simulation study

of an optical disk jukebox system. Hevner [He85] presents a model of an optical jukebox that is

used for a database application. Howard [Ho92] gives a performance model for data duplication

from an archive. Finestead and Yeager [FY92] give performance measurements of a Unitrce file

server at the National Center for Supercomputer Applications. Hull and Ranade [HR93] present

measurements of tape loading and unloading, and of data throughput, in a tape silo. Bedet et al.

[Be93] discuss the results of a detailed simulation model of the Goddard DAAC. Pentakalos,

Menasce, Halem, and Yesha [PMHY95] develop a queuing network model that incorporates a

RSL. Daigle, Kuehl, and Langford [DKL90] present a queuing model of an optical disk .jukebox.

Golubchik, Muntz and Watson [GMW95] analyze tape striping on an RSL.

The analyses most closely related to the one in this paper are [PMHY95,DKL90,GMW95]. The

analysis in [DKL90] gives a detailed model of access times to data on an optical platter.

However, only one drive is permitted and contention for the robotic ann is not modeled. In

[PMHY95], the authors present a detailed model of a data center, incorporating RAID disk

caches and user computation. However, the authors assume that contention for the drives in the
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RSL is negligible, and model the RSL as a delay server. Contention for the robotic ann due to

batch arrivals is modeled in [GMW95], but contention between ,jobs is not modeled.

The contribution of this work is to present a validated model of a RSL that accounts for batch

arrivals, multiple drives, contention for the robotic arm, and realistic operation. We show how

the model can be used to make a variety of data layout and device comparison studies. Finally,
we show how to incorporate the RSL model into a queuing network model.

Model of a Robotic Storage Library

Our model of a RSL is illustrated in Figure 1. Previous studies of mass storage archive log files

(see, for example, [Jo95a,DKL90]) indicate that requests to a mass storage device come in

hatches. This study has been corroborated by our studies of access to preliminary versions of the

EOSDIS archives (the V0 archives) [Bedet96, DunhamNorth96]. As a result, our RSL model
uses batch arrivals.

storage rack

I

job arrival

drives

robot i

I

CD

Figure 1

A user requests that f files be loaded into on-line storage, and these files are distributed over m

media in the RSL. The request is satisfied when every file has been loaded into on-line storage.

So, a user request consists of m jobs, each of which must be completed before the request in

finished. A RSL consists of nd drives, each of which can read or write any of the rnedia in the

RSL _, a storage rack containing the removable media, and a robot arm for transferring the media

between the drives and the storage rack. The model of a RSL is illustrated in Figure 1.

2 In some installations, a subset of the drives are designated as read-only or write-only. We will address
this complication in a later version of the model.
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The steps taken by a drive in retrieving files from a media is illustrated in Figure 2. When a

request arrives, its jobs are placed in the job queue, ff there are jobs in the RSL queue and a drive

is idle, the drive allocates one of the jobs for execution. First, the robot arm fetches the

appropriate media from the storage area and loads it into the drive. If the robot arm is busy

serving other drives, the drive must wait for service. After the media is brought to the drive, it

must be mounted. For every file of interest on the media, the drive must seek to the start of the

file, spend a settling time for precise positioning and opening communications channels, and then

transfer the file to on-line storage. After all files have been transferred, the media is rewound and

returned to the storage rack by the robot arm. However, the job is finished once all of the files
have been transferred.

In the next section, we briefly discuss our analytical performance model of a RSL system (a more

detailed discussion can be found in [Johnson96]). In this preliminary model, we make the

following assumptions:

• Requests arrive in a Poisson process.

The distribution of the number of media per request and the number of files per

request must be specified. In the model discussion, we assume that the number of

media per request and the number of files per request have geometric distributions.

These can be replaced by user-specified distributions (e.g. empirically determined),

but at the cost of requiring the user to specify more parameters.
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* The RSL can contains one robot arm. The robot arm can access every media, and

every drive.

• Every drive can read and write every media.

• Requests (i.e., jobs) are serviced first-come-first-serve 3.

• The service for a request is completed when the last file of the batch has been read

(written).

• Network or communication channel contention is not significant 4.

• Service times at the drives are independent.

Analytical model

A RSL presents many difficulties for performance modeling, including batch arrivals, multiple

servers, derived parameters, and interacting components. The primary component of the RSL

model, the MX/G/c queue, has been studied and solved in the literature [Tijms94]. Solving the

actual MX/G/c queue is intractable, so the solution technique is to interpolate between the results

for the MX/M/c queue and the MX/D/c queue using the coefficient of variation of the service time

as the interpolation parameter. Because of the potential complexity of the batch arrival

distributions, we do not use explicit (i.e., generating function) formulas. Instead, we numerically

solve the recurrence equation that defines the state occupancy probabilities. If the occupancy

probabilities of the first N states must be computed for an error bound of e, then solving the

M×/M/c queue requires O(N 2) time and solving the MX/D/c queue requires O(N 3) time.

Fortunately, we can take advantage of the nature of the problem to speed up the solution times.

The state occupancy distributions eventually converge to a geometric distribution (i.e., pN = to pN-

t). Therefore the recurrence equations only need to be solved up the first No states, and the

remainder can be computed using the to ratio (or perhaps the performance metrics can be

computed directly). No depends primarily on the distribution of the size of the batch arrival.

Fortunately, the batch arrival distribution will have a short tail -- one cannot request that more

media than exist in the storage rack be mounted, and usually only a few media are required to

3 A simple optimization is to load files for all requests once a media has been mounted. We assume this
situation has a negligible impact on performance in this model.

4 Potential model users indicated that communication channel contention is not a problem for their systems.
Communication contention can be incorporated into the seek times or mount times using standard techniques [Ka92].

534



satisfy a request. By using these tricks, we implemented batch queue solvers that are fast enough

to be incorporated into a higher level model which calls them many times.

We model the RSL as an MX/G/c queue -- that is, a queue with Poisson batch arrivals, general

service time distribution, and c servers. The parameters of a MX/G/c queue are:

• Arrival rate

• Mean service time

• Coefficient of variation of service time

• Batch size distribution

• Number of servers

All but the service time distribution are input parameters, so our analysis is focused on how to

compute the expected service time, Ed and the coefficient of variation CVd. To compute queue

length distributions and expected waiting times properly, we need to compute the time that a

drive is unable to serve other jobs per media that it serves. This period includes the time to fetch

the media, mount it, seek to each file, transfer each file, rewind and eject the media, and return it

to the storage rack. We will incorporate the time to return the media as part of the media fetch

time, so we have:

drive service = (robot fetch)+(mount time)+(seek time)+(transfer time)+(rewind time)

Since we are interested in the response time of the last job in the batch to finish (i.e., instead of

the average job), we need to modify the response time computation. An efficient algorithm for

computing the response time of the last job in the batch is given in [Ka92]. The modified MX/G/c

queue provides the batch response time Rbatch, the drive utilization rd, and pa(O) .... ,p,l(na-1), the

probability that 0 ..... ha-1 servers are busy on a request arrival (where nd is the number of drives

in the RSL). The effective drive service time (and Pa(.)) depends on the robot response time,

which in turn depends on Pa(.). Finally, the job is finished when the last file has been transferred,

there is no need to wait for the tape rewind. Therefore:

Rrequest = Rbatch - Erwd
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For more information about the derivations in the model, please see our other report
[Johnson96].

Interfaces

The RSL solver consists of a number of modules, mostly consisting of procedures to solve

MX/G/c queue. Figure 3 shows a map of the procedur_ calls. The functions rslsolvc and

rslsolve f are the entries to the RSL solver.

,_lsolve j rslsolve_f

w mxmcg _ mxgcf p_mxglf w_mxgcf

!;/\ I
servtime_mg servti e dg

-_ _ _ p_mxdlf erlanglk_fit/llF Jm

<Bias>

Figure 3

The prototype for the rslsolve function is

void rslsolve(float 1,float fr,float mr,int nd,int nr,float,Etr,

float Vtr,float tmt,float Xb,float Esz,float Vsz,float Erwd,

float Vrwd,float (* seekfun)(int,float*,float*),int ncust,

float *drho, float *dR, float *dW, float* dRv, float *dWv,

float *rrho,float *rR, float *rW, float *dmu, float *dV,

float *basemu,float *drbusy,int DEBUG)
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where the input parameters are:

• 1 is the arrival rate.

• fr is the average number of files per request.

• mr is the average number of media per request

• nd is the number of drives in the RSL.

• nr is the number of robot arms.

• Etr is the is the average robot fetch time.

• Vtr is the variance of the robot fetch time.

• tmt is the media mount time.

• Xb is the transfer rate.

• Esz is the average file size.

• Vsz is the variance in the file size.

• Erwd is the average tape rewind and unmount time

• Vrwd is the variance in the average tape rewind and unmount time.

• moments of the seek time, given that nfiles are loaded.

• DEBUG is set true to print a trace.

And the output parameters are:

• drho is the drive utilization

• dR is the batch job response time

• dW is the batch job waiting time

• dRv is the variance in job response time

• dWv is the variance in job waiting time

• rrho is the robot utilization

• rR is the avg. robot response time

• rW is the avg robot waiting time

• dmu is the drive service time

• dV is the variance of drive service

• basemu is the base drive service time

• drbusy is an array where drbusy[i] is the long-term probability that I drives are busy, 0

<= I <= nd-I (drbusy must point to the storage location for the array when the call is

made).

The rslsolve function assumes that the number of media per request and the number of files per

media have a geometric distribution. In the rslsolve_f function, the user supplies the distribution

of the number of media per request, but the number of files per media has a geometric

distribution. The prototype for the rslsolve_f function is:
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voidrslsolve_f(float1,floatfr, int nd,intnr,float,Etr,
floatVtr,floattmt,floatXb,floatEsz,float Vsz,float Erwd,
float Vrwd, float *bd, int bmax,

float (* seekfun)(int,float*,float*),int ncust,

float *drho, float *dR, float *dW, float* dRy, float *dWv,

float *rrho,float *rR, float *rW,float *dmu, float *dV,

float *basemu,float *drbusy,int DEBUG)

where

• bd is an array where bd[i] is the probability that a request requires I media.

• bmax is the largest number of media required to service a request.

Validation Study

We wrote a simple RSL simulator. The simulation accepts batch arrivals, requires that a robot

unload and fetch a media before a drive can service a job, handles multiple drives, and accounts

for media rewind times. The drive service time, except for the robot arm component, is sampled
from an Erlang distribution.

We used the following values of the parameters in the validation study:

• fr = 20.

• bd[.] : Geometric distribution.

• nd =4.

• Etr = 10.0 seconds.

• Vtr= 10.0.

• tmt = 10.0 seconds.

• X_b = 1.0 Mbyte/sec.

We ran four sets of experiments to test the model. In the "'large files" experiments, Esz=50,

Vsz=100, Tfs=50, and Tsl=l. In the "'small files" experiments, Esz=5, Vsz=10, Tfs=20, and
Tsl=2. We tested the model with mr=2 and mr=6.
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Theresultsof thevalidationstudyareshownin Figures4 through7. In eachcasethereis close
agreementbetweentheanalyticalandthesimulationmodels. Themostdifficult caseis whenthe
files are small and distributedover an averageof six media,becausethe robot fetch times
constitutea largeportion of the drive servicetimes (about22% of the total drive servicetime
whenthe robotic armwaiting time is added).However,theanalyticalmodel is accurateenough
to predict responsetimes and drive utilizations. Chartscomparinganalyticaland simulation
drive utilizationsareshownin Figures8and9.

Performance Study

A performance model is useful for studying implementation alternatives. In this section, we

present two sample performance studies based on the RSL model.

Clustering

Conventional wisdom holds that striping or declustering is necessary for obtaining high transfer

rates from tertiary storage (by making use of parallel I/O). So, one should spread the filcs of a

typical request around as many media as possible. Conventional wisdom also holds that

swapping media is a source of great inefficiency in RSL access, so that one should try to ensure

that the files of a typical request are placed on as few media as possible.

Neither argument is convincing, unless one has a predictive performance model. We ran the

"small files" experiment with mr ranging between 1.2 and 8. In Figure 10, we plot the response

time of a request against the number of media per request for varying arrival rates (A similar

chart can be found in an analysis of tape striping [GMW95]). For low arrival rates, setting mr to

approximately nd produces the best results. When lambda=.0001, setting mr =3 results in a 22%

lower response time than setting mr=l.2. For high arrival rates, setting mr=2 gives lower

response times than other choices.

In Figure 11, we plot the drive utilization against mr for varying arrival rates. Increasing mr

causes a linear increase in the drive utilization. As the arrival rate increases, it becomes less

likely that all nd drives are available to service the request. So, distributing the files over a

smaller number of media reduces queuing delays. If the demand on the RSL is expected to be

close to the device's capacity, then mr should be small to increase the maximum throughput of

the device.

The question of whether to cluster or decluster the files on the media can be summarized as:

If the expected drive utilization is low [PMHY95] and fast response is important, then

declustering can be a good strategy. However, the decrease in transfer times must be

larger than the increase in queuing delays.

* If high throughput is important, clustering is a good strategy.
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Number of Drives

Many RSLs allow the user to install a ranging number of drives. Adding drives to a RSL can

improve the perlbrmance of the device. But after a threshold, adding drives does not

significantly improve performance.

We ran a sample study using the "'small files" parameters and lbur media per request. In Figure

12, we plot the response time versus the arrival rate for a number of drives varying between 2

and 8. Adding a drive significantly improves performance up to four drives, but gives less benefit

alter four drives. In Figure 13, we plot the drive utilization against the arrival rate. Adding a

drive to the RSL increases the capacity of the device. However, the robot arm will start to
become a bottleneck. This can be seen in the non-linear increase in utilization of some o[ the

curves, for example for nd=8.

Computing Response Times for Particular Jobs

The rslsolve function computes tile response time for an average request. However, it is often

necessary to compute the expected response time for a particular request (with a particular

number of media to be accessed, etc.). The servtime* routines use information computed by

rslsolve to compute response times for particular requests. The prototype for the scrvtime_mf
function is:

void servtime_mf(float* bd,float bmax,float* pr,float m, int c,
float* Eserv, float* M2serv)

where the input parameters are:

• bd - batch arrival distribution.

• bmax- largest batch arrival.

• pr - pr[k] is the probability that k servers are busy, 0 <= k <nd

• m-service rate.

• c - number of servers.

And the output parameters are:

• Eserv - average request service time.

54O



• M2serv- 2ndmomentof requestservicetime.

The function servtime_mfassumesthat the servicetime hasan exponentialdistribution. A
similar routine,servtime_df,assumesthat the servicetime is deterministic. Resultsfor general
servicetimedistributionsareobtainedthroughinterpolation.

We considerthefollowing application.A largescaledatacenteris likely to havemultiple RSLs.
Thedevicesmight beacquiredto handledatacentergrowth,or multiple smalldevicesmightbe
lessexpensivethana single largedevice.In this section,we discussan approximationto the
requestresponsetime whentherequestis servedby multipleRSLs.

If a requestis servicesby two differentRSLs, the requestis finishedwhenboth deviceshave
completedtheir partof the request.Sincewe assumethat requestsare independent,we needto
analyzea fork-ioin queuewith interferingtraffic. ThomasianandTantawi [ThTa94,Th96]have
foundthatagoodapproximationto theresponsetime of thefork-join job is to takethemaximum
of the responsetimes of eachdevice(we assumean Erlangdistribution on the responsetime
whencomputingorderstatistics).

For anexperiment,we appliedthe "'large files" workloadto two RSLs,with both receivingthe
samearrival rate.We considereda requestthat requiredfiles from six media.In Figure 14,we
plot the responsetime of this request againstthe arrival rate,andvariedthe numberof media
thatmustbe loadedfromeachdevice.Theresultsshowthatwhentheloadon thetertiarystorage
devicesis low, it is better to divide therequestevenlybetweenthe two devices.But, whenthe
load is high it is better to useone deviceonly. The reasonfor this result is that splitting the
requestbetweenthe two devicesprovidesparallel I/O, but if the requeslloadis high, then the
variancein the responsetimesbecomeslarge.Thus,the decisionto allocatefiles so that most
requestsuseonly onedeviceor thatmostrequestsusebothdevicesdependson theexpectedload
placedon thedevices.

Queuing Network Model

A mass storage data system consists of many components in addition to the RSLs. Typical

hierarchical storage management systems use a database to track file to media location mappings,

and maintain a sizeable staging and caching area. The computing centers that use tertiary su)rage

often have large scale computing tasks. For example, EOSDIS archives must perform product

generation to filter, correct, remap, and fuse satellite images (see the reports in [ESDIS], and also

the discussion in [PMHY95]).

To capture the effects of RSLs in computing systems, we need to integrate the RSL model into a

queuing network model. The typical approach for incorporating devices with unusual response

time characteristics into a queuing network model is to use mean value analysis (MVA), and

develop a MVA recurrence for the device in question [Ka92]. However, it is difficult to develop
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such a recurrence even for multiple server devices. Therefore, we take the approach of

integrating the open RSL queue into a MVA model.

Although the RSL model solver is fast (about 2 seconds of execution time), an exact MVA

solver requires an iteration over every possible population vector. If the population is large and

there are many job classes, solution times become intolerably large. We instead used an

approximate MVA solver, making use of Schweitzer's approximation on queue lengths and

Bard's approximation for the load dependent servers [Ka92]. The approximate MVA solver built

using these approximations compute the throughput at each iteration, which we use as the arrival

rate at the RSL (after scaling by the visit ratio).

The function that solves the queuing network model is closedqn_rsl. Its prototype is:

int closedqn_rsl( int M, int K, double D[MaxM][MaxClass], double* N,

int* servtype, double alpha[MaxLD][MaxPop], struct rslparamstr* rslparam,

double visit[MaxM][MaxClass],
double lam out[MaxClass], double Rloc[MaxM][MaxClass], double* U)

where the input parameters are:

• M- number of servers.

• K- number of classes.

• D - D[k][r] is the service demand of a class r job at server k.

• N - N[r] is the number of customers of class r.

• servtype - servtype[k] encodes server k's type, and possibly points to additional

parameters.

• alpha - alpha[l] [*] are the service rate multipliers of load dependent server 1.

• rslparam - rslparam[1] is a structure containing the service parameters of RSL 1.

• visit - visit[k][r] is the number of times a class r job visits server k.

And the output parameters are:

lam_out - lam_out[r] is the throughput of class r jobs.

Rloc - Rloc[k][r] is the residence time of a class r job at server k, per visit.

U - U[k] is the utilization of server k.

Incorporating an open queuing model into a closed queuing network can introduce inaccuracies

(we implemented some heuristic corrections). To test the accuracy of the approximate MVA

model, we simulated a computer system with a RSL and three other queuing devices. The

requests to the RSL used the "'large file" workload, and every customer submits a single request
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to theRSL pertaskexecution.Therearethreequeuingdevices,with per-taskservicedemandsof
250,400,and350unitsof work, respectively.

Weplot theresponsetimeof theRSLagainstthenumberof customersin thesystemin Figure 15
for asleeptime of 5000and9000.Themodelis accurateevenfor asmall numberof customers.
However, the accuracydeclineswhen the numberof customersis large and the sleeptime is
small. This problem is occurringbecauseone of the queuingdevices is saturated,and the
approximateMVA solverbecomesinaccuratein thesesituations.

Conclusions

We havedevelopedananalyticalmodelof a roboticstoragelibrary andvalidated,the modelby
comparisonto simulations.The RSL consistsof a storagerack for removablemedia,a set of
drives that read and write the media,and a robotic arm that transfersthe media betweenthe
storagerackandthedrives.

TheRSL modelcanbeusedfor manyuseful studies.We provideexamplesof data layout and
deviceselectionstudies.A RSL is usedasa partof a largercomputingsystem.We incorporated
theRSL solver into anapproximateMVA queuingnetworkmodel, andvalidatedthe model by
comparisonto asimulation.

We havedevelopedthis model to supportNASA's EOSDISon-line archiving efforts. Future
work will be directedtowardsrefining the model andproviding studiesuseful to archivesites.
This work includesfurthermodelrefinements,andencapsulatingthequeuingmodelsolversinto
Javaappletsthatperformparticularanalyses.
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Varying arrival rate, small files
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Response time vs. number of drives,
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Dividing a request between two devices
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Tertiary storage in a QNM
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